
1.1 Gaussian beams  Consider two identical spherical mirrors A and B that have been 

aligned to be focal directly face each other as in Figure 1Q1. The two mirrors and the space in 

between them (the optical cavity) form an optical resonator because only certain light waves 

with certain frequencies can exit in the optical cavity. The light beam in the cavity is a Gaussian 

beam. When it starts at A its wavefront is the same as the curvature of A. Sketch the wavefronts 

on this beam as it travels towards B, at B, as it is then reflected from B back to A. If R =25 cm, 

and the mirrors are of diameter 2.5 cm, estimate the divergence of the beam and its spot size 

(minimum waist) for light of wavelength 500 nm. 

 

 

Figure 1Q1 

 

Solution 

Let D = diameter of the mirror, from Figure 1Q1, tanθ = (D/2)/R gives  

  θ = arctan(D/2R) = arctan(0.05) = 0.05 rad.  

 Divergence is 2θ or 0.1 rad. 

 Divergence 2θ and spot size 2wo are related by 

  2θ =
4λ

π (2wo)
 

and depends on the wavelength of interest.  Taking  λ = 500 nm, 

and,  2wo =
4λ

π (2θ)
=

4(500 ×10−9  m)

π (0.1)
= 6.4 ×10

−6
 m or about 6 micron. 

1.7 Phase changes on TIR  Consider a light wave of wavelength 870 nm traveling in a 

semiconductor medium (GaAs) of refractive index 3.6. It is incident on a different 

semiconductor medium (AlGaAs) of refractive index 3.4, and the angle of incidence is 80°. Will 

this result in total internal reflection? Calculate the phase change in the parallel and 

perpendicular components of the reflected electric field. 

Solution 

Two confocal spherical mirrors reflect waves to and from each
other. F is the focal point and R is the radius. The optical cavity
contains a Gaussian beam
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a First calculate the critical angle: θc = arcsin(3.4/3.6) = 70.8°. The angle of incidence θi is 

greater than θc and hence there will be TIR. Since the incidence angle θi > θc there is a phase 

shift in the reflected wave. The phase change in Er,⊥ is given by φ⊥. With n1 = 3.6, n2 = 3.4 and θi 

= 80°, 
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so that the phase change is  

   φ⊥ = 116.21°°°°. 

 For the Er,// component, the phase change is 
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so that   tan(
1
/2φ// + 

1
/2π) = (n1/n2)

2
tan(φ⊥/2) = (3.6/3.4)

2
tan(

1
/2116.21°) 

which gives   φ// = −−−−58.1°°°°  (or 121.9°°°°) 

 We can repeat the calculation with θi = 90° to find φ⊥ = 180° and φ// = 0°. 

 Note that as long as θi > θc, the magnitude of the reflection coefficients are unity. Only 

the phase changes. 

 For information: The amplitude of the evanescent wave as it penetrates into medium 2 

is  

   Et,⊥(y,t) ∼ Eto,⊥exp(−α2y)
 

 We ignore the z-dependence, expj(ωt − kzz), as this only gives a propagating property 

along z. The field strength drops to e
-1

 when y = 1/α2 = δ, which is called the penetration depth. 

The attenuation constant α2 is  

   α2 =
2πn2
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i.e.   
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so that the penetration depth is,  

   δ = 1/α2 = 1/(7.26×10
6 

m) = 1.38×10
-7

 m, or 0.14 µm. 

 



1.12 Goos-Haenchen phase shift  A ray of light which is traveling in a glass medium of 

refractive index n1 = 1.460 becomes incident on a less dense glass medium of refractive index n2 

= 1.430. Suppose that the free space wavelength of the light ray is 850 nm. The angle of 

incidence θi = 85°. Estimate the lateral Goos-Haenchen shift in the reflected wave for the 

perpendicular field component. Recalculate the Goos-Haenchen shift if the second medium has 

n2 = 1 (air). What is your conclusion? 

Solution 

 

Figure 1Q12 

 The problem is shown in Figure 1Q12. When  θi = 85°, 
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 The penetration depth is δ = 1/α2 = 5.09×10
-7

 m. The Goose-Haenchen shift is 

   ∆z = 2dtanθ = 2(5.09×10
-7

 m)(tan85°) = 11.6×10
-6

 m = 11.6 µµµµm 

 We can repeat the calculation using n2 = 1 (air), then we find δ = 1/α2 = 1.28×10
-7

 m, and 

∆z = 2dtanθ = 2(1.28×10
-7

 m)(tan85°) = 2.93×10
-6

 m = 2.93 µµµµm. The shift is small when the 

refractive index difference is large. The wave penetrates more into the second medium when the 

refractive index difference is smaller. 

1.15 Spectral widths 

a   Suppose that the frequency spectrum of a radiation emitted from a source has a central 

frequency  υo and a spectral width ∆υ. The spectrum of this radiation in terms of wavelength will 

have a central wavelength λo and a spectral width ∆λ. Clearly, λo = c/υo. Since ∆λ << λo and ∆υ 

<< υo, using λ = c/υ, show that, the line width ∆λ and hence the coherence length lc are    
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   ∆λ = ∆υ
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c
  and lc = c∆t =

λo

2

∆λ
    

b Calculate  ∆λ for a lasing emission from a He-Ne laser that has λo = 632.8 nm and ∆υ ≈ 

1.5 GHz. 

Solution 

Consider λ = c/υ and then differentiate this with respect to υ, 

   
dλ

dυ
= c

−1

υ 2    

 Now substitute for c, c = λυ, to get 

   
dλ

dυ
= −

λ

υ
  

 The negative sign means that if λ increases by dλ, υ decreases by dυ. We are interested 

in small “intervals” around central values. The spectral width, the wavelength interval, ∆λ is 

much smaller than the emission wavelength, or the center wavelength,  λo. Similarly ∆υ  << υo. 

We do not need the negative sign as ∆λ and ∆υ the intervals centered on λo and υo. ∆λ and ∆υ 

are positive quantities. 
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 The coherence length lc is determined by the temporal coherence time ∆t which is 

determined by the frequency width ∆υ, and hence by ∆λ, 
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 Given λ = 632.8 nm, ∆υ =  1.5 GHz. Thus,  

   υ = c/λ = (3×10
8
 m/s)/(632.8×10

-9
 m) = 4.738×10

14
 s

-1
 or Hz.  

Thus,   ∆λ = ∆υ
λ

υ
= (1.5 ×10

9
 Hz)

(632.8 ×10−9  m)

(4.738 ×10
14

 Hz)
= 2.00××××10

-12
 m or  2.00 

pm. 1.17  Bragg Diffraction  Suppose that parallel grooves are etched on the surface of a 

semiconductor to act as a reflection grating and that the periodicity (separation) of the grooves is 

1 micron. If light of wavelength 1.3 µm is incident at an angle 89° to the normal, find the 

diffraction beams. 

Solution 

Consider the Bragg diffraction grating equation, 

  d(sinθm − sinθi) = mλ ; m = 0, ±1, ±2, …  

Take m = 0 to find the zero-order diffraction, which is the normal reflected beam. The result is 

θm = θI = 89° as shown in Fig1Q17; this identifies the meaning of the positive angle in the 

reflected beam with respect to the normal.  



 d(sinθm − sinθi) = mλ ; m =   ±1, ±2, …  

 Substituting  d = 1 µm, λ = 1.3 µm, θi = 89°, m = −1,  

  (1 µm)[sinθm − sin(89°)] = (1)(1.3 µm)  

solving, θm = −−−−17.5°°°° 
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Figure 1Q17  

 


